Nov 132016


A 2007 review of coupled cluster theory by Bartlett and Musial (Bartlett, R. J.; Musiał, M. Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod. Phys. 2007, 79, 291–352) opens with an intriguing quotation of a 1989 article by physics Nobel prize winner Kenneth Wilson:

Ab initio quantum chemistry is an emerging computational area that is fifty years ahead of lattice gauge theory…and a rich source of new ideas and new approaches to the computation of many fermion systems.

I recently read this paper (Wilson, K. G. Ab Initio Quantum Chemistry: a Source of Ideas for Lattice Gauge Theorists. Nuclear Physics B – Proc. Suppl. 1990, 17, 82–92) and found it extremely interesting. The article begins by saying that Wilsons had switched his field of research from lattice gauge theory to computational quantum chemistry. One of the reasons for this change, Wilson says, is ancestral, adding an interesting explanatory note in which he acknowledges discussions with his father, E. B. Wilson. The second reason he reports is the lack of sources of inspiration in his field.
In his paper Wilson discusses the benefits of using Gaussian basis functions compared to numerical grids, the emphasis of quantum chemistry on analytic approaches rather than stochastic methods, and “the status of my efforts to ease the programming burden using the C++ programming language”.
In just a few pages, Wilson summarizes with extreme clarity the state-of-the-art in quantum chemistry (in 1989). He provides a very clear description of the major challenges in this field, and succinctly analyzes purpose and limitations of some of the most important methods used in quantum chemistry.

To my surprise, Wilson was at the time also concerned with the software productivity of scientists, an issue that is still very relevant today. I was quite excited to see that Wilson had already recognized the potential of C++ to simply the organization of large computer codes. In Wilsons words:

The ability to attach variable names and subroutines and functions to a common block is, I find, a powerful organizing
tool for large programs.

I think this article is a little gem and recommend it especially to those interested in the history of physics and quantum chemistry. I hope you will enjoy reading it!

 November 13, 2016  Uncategorized

Sorry, the comment form is closed at this time.